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Abstract
The density matrix renormalization group (DMRG) has been extended to study
quantum phase transitions on random graphs of fixed connectivity. As a relevant
example, we have analysed the random Ising model in a transverse field. If
the couplings are random, the number of retained states remains reasonably
low even for large sizes. The resulting quantum spin-glass transition has been
traced down for a few disorder realizations, through the careful measurement of
the entanglement entropy and some selected observables: spatial correlations,
energy gap and spin-glass susceptibility, among others.

PACS numbers: 05.10.Cc, 73.43.Nq, 75.10.Nr, 75.40.Cx

1. Introduction

Quantum phase transitions constitute a very active topic in theoretical physics [1], to which
disorder and frustration of a quantum spin glass add considerable intricacies [2]. Although
quantum effects were usually considered to be negligible in spin glasses at finite temperatures,
diverse experiments [3–5] have proved them to be highly relevant, leading to the first
experimental realization of quantum annealing [6]. One of the most widely employed
theoretical approaches to the quantum spin-glass transition (QSGT) is the random couplings
Ising model in a transverse field (RITF) [7]. Within the analytical approach, a Griffiths phase
was found in the 1D case via an elegant RG procedure [8, 9], while such a structure was
proved to be absent from the infinite range case within the replica formalism [10–12]. The 1D
RG analysis was extended to study the presence of a certain number of long-distance links,
proving the relevance of the perturbation [13]. Regarding numerical approaches, quantum
Monte Carlo (QMC) remains as the most suitable tool at T > 0. Using it, a coherent picture
was obtained in the 2D and 3D cases, showing that the Griffiths phase is present in 2D but
absent in 3D [14–16].

Classical spin glasses have been thoroughly analysed on Bethe lattices [17]. However,
finite Bethe lattices are dominated by boundary effects and present no frustration. A way out
is to study random graphs with a fixed connectivity which, in the classical case, allow the
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Figure 1. (a) A random graph with N = 30 sites and connectivity K = 3. Stronger bonds
highlight the local Bethe lattice structure around site 25. Numerical labels denote the order in
which they are visited along the DMRG path. (b) Deformation of the same graph to show the
DMRG path as a straight line. The left and right blocks at a certain DMRG step are shown, and the
dashed line cuts all the long-range links that would need reconstruction during that DMRG step, 9
in the example.

application of the cavity approach [18]. These random graphs present genuine frustration,
since they have loops, and have no boundaries. On the other hand, the average size of the
loops grows with the number of sites [19], thus making them resemble, locally, a Bethe lattice
(see figure 1).

The density matrix renormalization group (DMRG) [20, 21] is known to be a highly
accurate method to analyse T = 0 ground-state properties of 1D or quasi-1D quantum many
body systems, including tree structures [22]. We have extended the method in order to trace
the behaviour of finite size samples of random graphs of fixed connectivity K = 3 across the
QSGT within the RITF model. Given the high connectivity of these graphs, the applicability
of the DMRG is highly non trivial. It is remarkable that in the case of non-random couplings,
we have found the number of retained states needed to ensure a good accuracy to be very high,
rendering the application of the DMRG unfeasible.

The careful analysis of pseudo-critical points of finite size samples constitutes a powerful
tool to study a QSGT. As a recent example, the work of Iglói and coworkers [23] studies
the distributions of, e.g., the average entanglement entropy and the surface magnetization of
finite size 1D samples. In this work we provide measurements of, among others, spin-glass
susceptibilities, energy gaps, long distance spin–spin correlations and entanglement entropies,
and use them to obtain insight on the mechanism of the transition. A full characterization of
the QSGT, nonetheless, is not attempted in this work, since it would require obtaining statistics
on a large number of disorder realizations.
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The rest of the paper is organized as follows: section 2 presents the model, and section 3
provides details on the application of DMRG. Section 4 shows the numerical DMRG results
obtained. Section 5 presents a discussion of the results and some concluding remarks.

2. Model

Let us consider the random Ising model in a transverse field (RITF) on a generic graph [7]:

H = −
∑
〈i,j〉

Jijσ
z
i σ z

j −
∑

i

hz
i σ

z
i − �

∑
i

σ x
i , (1)

where 〈i, j 〉 denotes pairs of neighbouring sites i and j on the graph. The values of Jij are
uncorrelated random variables with a uniform probability density distribution in the interval
[−1, 1]. We will focus our study on randomly generated graphs, with N sites and a fixed
connectivity K = 3 [18, 19], i.e., each site i is connected to K = 3 other (randomly chosen)
sites j . An example of such a graph, with N = 30 sites, is shown in figure 1.

It should be noted that, locally and for large N, such graphs resemble Bethe lattices, as
we have highlighted with thicker links in figure 1. Nonetheless, the behaviour of finite Bethe
lattices is dominated by the boundary, unlike in our case, where there is none. Moreover,
trees have no loops and, therefore, present no frustration, while random graphs with fixed
connectivity do contain loops and, therefore, have genuine frustration. It has been proved,
nonetheless, that short loops become rare as N → ∞: more precisely, the probability of
finding a loop of any fixed size L falls to zero when N → ∞ [19]. The physics of classical
spin glasses in these graphs has been studied using the cavity method by Mézard and Parisi
[18].

Let εN be the absolute value of the disorder-averaged energy per site of the classical
ground state. Our numerical experiments show that it increases from ∼0.6 at N = 100 up to
∼3/4 for larger N, which is the theoretical limiting value for N → ∞ under the assumption
that all links are satisfied.

We will take the product of eigenstates of σ z
i , for all i, as the canonical basis for our

problem. In this basis, we denote the state in which all spins point in the positive x-direction
as |x̂〉 ≡ 2−N/2 ∏

i (|↑〉+ |↓〉). Let us assume, for the moment, that hz
i = 0 for all i. For � = 0,

all the non-diagonal terms in the Hamiltonian vanish. Therefore, the ground state is given by
the configurations with the classical minimum energy. Disregarding accidental degeneracies,
there are two such configurations, related by a simultaneous flip of all spins, σ z

i → −σ z
i for

all i. The transverse field � may be considered as a kinetic energy coefficient, providing a
hopping term among the classical configurations. In the � → ∞ limit the transverse field
term dominates and the ground state tends to the state |x̂〉, with all the spins pointing in the
positive x-direction, separated by a large gap � ≈ 2� from the first excited state. Let us
remark that all the components of the canonical basis have the same amplitude in the state |x̂〉.

By decreasing � there is a certain value � = �c for which the system undergoes a quantum
spin-glass transition (QSGT). For � > �c, the system is in a quantum paramagnetic phase,
which presents no long-range order. Below �c, the system is in a quantum spin-glass phase,
presenting a hidden long-range order which may be detected by a number of observables. We
will focus here on the divergence of the spin-glass susceptibility:

χSG ≡ 1

N

∑
ij

(
∂
〈
σ z

i

〉
∂hz

j

)2

, (2)

i.e., physically, a small longitudinal magnetic field hz
j , applied at site j , generates a

magnetization response on each site i, which is measured (and squared, so as to disregard
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its sign); the results are summed over all sites i and averaged over all sites j . If the system is in
a paramagnetic phase, the magnetization will be proportional to hz

j and short-ranged in space,
so that the sum over i and j yields a finite value for χSG. On the other hand, on approaching
the spin-glass phase, an infinitesimally small longitudinal magnetic field hz

j , localized at a
single site j , will eventually induce a finite magnetization over a long range of spins. This
effect is at the origin of the divergence of χSG.

We shall now discuss the numerical approach we have used to study this system, and the
results obtained.

3. Application of the DMRG

The density matrix renormalization group (DMRG) has proved to be an accurate method to
analyse the properties of 1D and quasi-1D systems [20–22]. The DMRG may be described as a
variational method within the matrix-product states (MPS), which constitute a low-dimensional
subspace of the full Hilbert space [24]. A MPS may be expressed as

|�〉 =
∑

s1···sN

Tr(A(s1) · · ·A(sN ))|s1 · · · sN 〉, (3)

where each A(si ) is a square matrix with dimension m, which may be considered as the number
of retained states per block when splitting the system into a left and right parts. The total
number of variational parameters is less than 2Nm2 
 2N . The success of the DMRG is
related to the ability of these MPS to reproduce faithfully the ground states of local 1D many-
body problems for low values of m [25]. If m → ∞, any state of the Hilbert space may be
exactly represented as a MPS.

The minimum number of retained states m is related to the exponential of the von Neumann
entanglement entropy of the DMRG block [26]. In a non-critical 1D system, this entropy is
bounded for all sizes, while it grows as ln L for a 1D critical system of length L. It is believed
that for a D-dimensional system out of criticality, the entanglement entropy scales as LD−1,
where L is the shortest spatial dimension of the system [27]. This estimate is known as the area
law and is believed to have logarithmic corrections at critical points. An important practical
consequence is that, in order to study a 2D system, the number of retained states m should
grow as exp(L), thus making the DMRG very inefficient.

Our system, on the other hand, is defined on a random graph of fixed connectivity, K = 3.
We will show that this poses no problem to the number of retained states m, which appears
to remain manageable even for N = 500 as long as the couplings are random. However,
the implementation of the DMRG on such a model has required the following technical
refinements of the original method:

(a) Path selection. In a non-1D system, DMRG proceeds by converting the system into an
effective 1D problem with long-range couplings. A path is chosen along the graph, which
does not repeat sites, and is considered to be appropriate if the number of broken links
between the left and the right blocks is kept low along a DMRG sweep. Normally, the
selection of a suitable path in a quasi-1D system (e.g., ladders) is done by geometrical
intuition. In our implementation we have designed an automated procedure: a simulated
annealing algorithm is employed in order to minimize the number of broken links. The
full problem of finding the optimal path is computationally very hard. Therefore, we do
not aim at the exact optimum, but only at a reasonably good local minimum. We have
noted that our quasi-optimal path performs much better than a random path.

(b) Perron–Frobenius criterion. The Hamiltonian of the RITF on any graph fulfils, on the
canonical basis, the conditions of the Perron–Frobenius theorem, i.e., all off-diagonal
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components are non-positive. Hence, all the ground-state components must have the
same sign. Using the MPS representation of the ground state obtained within the DMRG,
it is always possible to reconstruct the amplitude of any configuration C = {s1 · · · sN }.
The obtention of the full |�〉 is unfeasible, since it would require reconstructing the
amplitude of an exponentially large number of configurations. Nonetheless, it is possible
to pick up a few random configurations C, and check that all their amplitudes have the
same sign. Whenever this criterion was not met—a rather rare event, the calculation was
repeated changing the random seed for the Lanczos procedure on the first DMRG step.

(c) Wavefunction annealing. For large � the ground state |x̂〉 is easily representable as a MPS,
requiring a single retained state. The DMRG works extremely well in this regime and,
therefore, our simulations are always started well within the paramagnetic (large �) phase.
The QSGT is approached by repeatedly decreasing the value of � by a small amount,
always using the previous ground state as a seed for the new calculation, exploiting the
wavefunction transformations suggested by White [28]. This type of annealing of the
ground state provides a faster convergence and more accurate results for low �.

(d) Adaptive number of retained states. The number of retained states m, and the number of
DMRG sweeps ns , are not fixed in our algorithm. We set a maximum value for the sum
of the neglected eigenvalues of the density matrix in the RG truncation (η ≈ 10−6), and
select m accordingly. Moreover, sometimes convergence takes more sweeps than usual
(ns ≈ 30–40) in order to obtain machine precision in the convergence of the ground-state
energy.

(e) Energy gap measurements. When there is a symmetry in a problem, e.g., under SU(2),
it is usually possible to obtain the first excited state as the ground state of a different
sector of the Hilbert space. In our case, lacking this, the best option has proved to be the
following one. For each DMRG step, after the ground state |�0〉 had been found, it was
‘promoted’ to a higher energy by the following transformation of the Hamiltonian:

H → H + λ|�0〉〈�0|, (4)

in such a way that the ground state of this new Hamiltonian is the former first excited
state, as long as we take λ > �,� being the gap we are looking for. The density matrix
used for truncation was built as a linear combination of the density matrices for each
state, with equal weights. However, we should remember that only ground states of local
Hamiltonians are expected to be faithfully represented by MPS [25], and equation (4)
does not define a local Hamiltonian. Therefore, the accuracy in the gap estimate is worse
than that in the ground-state energy and in other observables.

4. Results

We have applied the modified DMRG technique to study a few samples of random graphs
with fixed connectivity K = 3 and sizes ranging from N = 50 to N = 500.

A full characterization of the QSGT would require relevant statistics on the disorder.
Unfortunately, in order to obtain a high accuracy for each sample, the required CPU time is
rather large. Therefore, we have decided to focus on a precise study of a few realizations, in
order to gain insight on the mechanism of the transition for finite samples. Most of our findings
will be illustrated in the figures of this section by showing in detail the results obtained for a
sample with N = 200 sites. It should be remarked that the highlighted features are typical of
all the ensemble.

The numerical simulations were done with the DMRG algorithm explained in section 3,
with a neglected probability tolerance η = 10−6 and a tolerance on the convergence of the
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energy of one part in 1010, for ten samples of each size (N = 50, 100, 150, 200, 250, 300,
400, 500). Each sample is a different random graph, always with fixed connectivity K = 3,
and the bonds Jij are random and independent, uniformly distributed in the interval [−1, 1].

Figure 2(a) shows three magnitudes calculated for a given instance of a N = 200 graph,
as a fuction of �. The most relevant quantity is the spin-glass susceptibility, defined in
equation (2). A small magnetic field hz

i0
= 10−4 is applied at a single site i0, and the magnetic

response is measured with the formula

χ
(i0)
SG ≡

∑
j

(〈
σ z

j

〉
hz

i0

)2

, (5)

which is found to increase very fast as � approaches 1.28 from above, and thereupon saturating
at a very high value. Figure 2(b) proves the divergence of χSG by showing its behaviour at
three different values of hz

i0
(hz

i0
= 10−3, 10−4 and 10−5): the saturation value is seen to

scale as 1
/(

hz
i0

)2
. We estimate the pseudo-critical value �c for the given sample as the value

of � at which the slope of the susceptibility attains its maximum. With this definition, �c

appears to be almost independent of the chosen site i0, at our level of precision �� = ±0.01.
Figure 2(c), finally, shows χSG for ten different samples with N = 200 sites, differing in
the graph structure and in the choice of the couplings Jij , and diverging at different (sample-
dependent) values of �c.

Figure 2(a) also shows two other magnitudes which point towards the same value for
�c. The first is the block entanglement entropy, defined as S ≡ −Tr(ρ log(ρ)), where ρ

is the reduced density matrix for a part of the system. It is measured for all the left-right
decompositions along a DMRG sweep, and its maximum value is denoted by Smax. This value
of Smax is obviously dependent on the DMRG path. Nonetheless, since this path has been
chosen so as to minimize the number of retained states, it is expected that it will also minimize
the maximum value of the entropy. It should be emphasized that this magnitude attains its
maximum value, as a function of �, at the same �c which is found by analysing the spin-glass
susceptibility. The relevance of the entanglement entropy in order to characterize the critical
point of a QSGT has already been remarked in the literature [23]. The DMRG, being based
on the obtention and analysis of the density matrix of different parts of the system, is specially
well suited for its measurement [29].

The other observable shown in figure 2(a) is the energy gap �, which extrapolates to
zero at a value of � which is close to �c. The sign of the difference between these two
pseudo-critical points is sample dependent. This discrepancy is likely to be a finite-size effect.

The next observable that we calculated for each sample is the average value of 〈Sx〉, see
figure 3. For high �, the transverse field is dominant, the ground state is close to |x̂〉 and the
value of 〈Sx〉 is close to 1. As we decrease �, this value is reduced. It is remarkable that, at
the value of �c defined by χSG, and confirmed by the maximum block entropy, 〈Sx〉 is never
lower than 0.95, at variance with the 1D RITF, where it is normal to have values below 0.5.
Also in figure 3 we have plotted the behaviour of the quantum equivalent of the q(2) order
parameter, which measures the magnitude of the long-distance spatial correlations [30],

q(2) ≡ 2

N(N − 1)

∑
i<j

〈
σ z

i σ z
j

〉2
. (6)

Our definition differs slightly from that used commonly in the literature on classical spin
glasses. Instead of the long-distance behaviour, we measure the global average behaviour.
They are equivalent in a system with a Bethe lattice topology because the number of neighbours
of a given site at distance d scales as exp(d). Also note that these two observables, 〈Sx〉 and q(2),
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Figure 2. (a) For a random sample with N = 200 sites, the spin-glass susceptibility χSG is shown
in a logarithmic scale, along with the maximum block entropy Smax and the energy gap �, the
two latest in arbitrary units. The divergence of χSG is marked with the vertical line, which clearly
coincides with the maximum value of Smax. The energy gap comes very close to zero (dotted line)
precisely in that region. (b) The fact that χSG saturates is related to the finite value of the applied
hz field. In this figure we can see how this saturation value increases as hz is decreased. (c) The
divergence of χSG is shown for several samples, all with N = 200 sites.

have the advantage that they do not vanish trivially in the absence of an external longitudinal
magnetic field.

This quantity is close to zero within the paramagnetic phase, and takes a non-zero value
inside the spin-glass phase. Figure 3 shows that the behaviours of q(2) and 〈Sx〉 are highly
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Figure 3. The behaviour of 〈Sx〉 and the q(2) order parameter is shown for the same sample of
figure 2. The two curves are strongly correlated, suggesting a transition at the same value of �.
This value is substantially lower than the �c pointed by χSG, and Smax, which is marked in the plot
with a vertical line.

correlated, both pointing to a pseudo-critical point which is, in many instances, sensibly
lower than that obtained with χSG and Smax. This systematic discrepancy is not explainable
in the framework of classical physics, since the fluctuation–dissipation theorem leads to the
proportionality of q(2) and χSG [30]. In the quantum case, χSG is not equivalent to q(2), but to

χSG = 1

N

∑
ij

[∫ β

0
dτ

〈
σ z

i σ z
j (τ )

〉]2

(7)

where the integral is performed on imaginary time, from τ = 0 to β. Therefore, in quantum
spin glasses, χSG contains a contribution from time correlations, while q(2) only measures
spatial ones. Their different divergence points might suggest that long-distance correlations
develop at a higher value of � in time than in space.

At different sizes N, the behaviour of the various samples is qualitatively similar, the only
difference being the sample-dependent value of �c(N). It is possible to construct histograms
showing, for different N, the probability distribution of the various �c(N). As a preliminary
result, we mark in figure 4 by empty circles the �c values obtained for 10 samples of different
sizes: N = 50, 100, 150, 200, 250, 300, 400 and 500. The crosses mark, for each size N, the
average values of �c(N), which apparently saturate at some point around 1.5.

A useful clue to the physics of this system across the transition is obtained by monitoring
selected wavefunction components of the ground state as a function of �, which can be easily
done with the DMRG. We illustrate this in figure 5, for a sample with N = 100 whose �c is
marked by the arrow. One of the monitored configurations is the classical ground state of the
system. (Naturally, there are two of them, related by a global spin flip, which we denote by φ+

and φ−. They are obtained by measuring the values of
〈
Sz

j

〉
at each site for very low � under

the presence of a very small longitudinal field hz that splits the degeneracy between them.
We will consider its weight to be the sum of their probabilities.) The weight of the classical
ground state grows up to 1 as � is decreased. A second monitored configuration is picked at
random (dashed lower line in figure 5): the weight of such a random configuration is similar to
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Figure 4. The abscissa of each circle denotes the value of �c for a different sample, its ordinate
being its size N. The crosses, joined by a line, denote the average values of �c(N) for each size.
These average values seem to converge to a value around 1.5.
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Figure 5. Probabilities of various classical configurations within the ground state, as a function
of �, for a sample with N = 100 sites. Note the log scale. The QSGT as obtained from the
divergence of the spin-glass susceptibility is marked with an arrow. One of the configurations
is the one which minimizes globally the classical energy (for � = 0). Another one is chosen at
random. The rest are configurations with energies very close to that of the global minimum. It is
noticeable how, after the transition, all the states but the random one increase their probabilities.
Nonetheless, after some further decrease in �, all of them but the real minimum reach a maximum
value and eventually fall to zero.

that of all the others only for very large values of �, while it is definitely much smaller when �

approaches the pseudo-critical point. The remaining monitored configurations in figure 5 are
obtained by classical simulated annealing, i.e., they are local minima of the classical energy.
These configurations maintain a high weight (similar to that of the optimal configuration)
across the transition, up to a value of � below which their weight declines markedly.
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Therefore, the number of relevant classical configurations contributing to the ground state
changes drastically across �c. Deep into the paramagnetic phase, all of them have the same
weight, coherently bound within the |x̂〉 state. This state retains a high weight at �c, as shown
by the high values taken by 〈Sx〉 at that moment. Within the spin-glass phase, the weight
of the different configurations is gradually redistributed according to their classical energies,
until eventually only the classical ground state remains.

It should be remarked that the DMRG was applicable in practice only in the case of random
couplings. For random graphs with fixed values of J (either ferro or antiferromagnetic), the
number of retained states needed for a similar accuracy increased in an order of magnitude,
rendering the calculations impractical.

5. Discussion and conclusions

It should be remarked that a quantum phase transition may be observed exactly in the MPS
formalism with as few as two retained states per block [31]. The low values of Smax measured
in our system point to the fact that the number of states involved in the QSGT is reduced.
Thus, in an attempt to explain the transition we might build a simple-minded Ansatz consistent
of a linear combination of only two states: the classical ground state |φ〉 = 1√

2
(|φ+〉 + |φ−〉)

and a background state containing the rest of classical configurations:

|B〉 = 1√
2N − 2

∑
φ∈S−φ±

|φ〉. (8)

Neglecting matrix elements which are exponentially small for large N, there is a very
sharp crossover at �c(N) = εN , from state |B〉 to state |�〉. This last state clearly presents
a divergent spin-glass susceptibility. The physics of our model is actually more complicated
than this simple Ansatz, as shown by the numerical estimate, �c(N) ≈ 2εN for large N.

An interesting question is how our system differs from the 1D RITF analysed by Fisher
and coworkers [8, 9]. In 1D, duality arguments and a detailed RG analysis give a value of
�c satisfying log �c = [log Jij ]av , where [·]av indicates a disorder average. This equation
leads to values of �c much lower than those measured in our random graph case (e.g., for our
distribution of Jij , Fisher’s model yields �c = e−1, while in our case it reaches �c ≈ 1.5 for
N = 500 sites). The higher connectivity seems to make a large difference in that respect.
Moreover, in our case, the value of 〈Sx〉 at the transition is fairly high, about 0.95, while it is
almost always below 0.5 for RITF chains with the same sizes. This means that the state |x̂〉
is still dominant in the paramagnetic phase at the moment of the divergence of the spin-glass
susceptibility.

In conclusion, we have extended the DMRG to make it suitable to study the QSGT on
random graphs. The main technical innovations are the path selection, which reduces the
maximum number of retained states, and the wavefunction annealing, which allows us to use
the ground state for a certain value of � as a seed to obtain the ground state for a lower value.

This modified DMRG algorithm has been applied to the measurement of the energy gap
�, spin-glass susceptibility χSG, entanglement entropy Smax, long-distance spatial correlations
q(2) and average x-magnetization 〈Sx〉 to high precision on a few samples of different sizes,
ranging from N = 50 to N = 500 sites. Remarkably, Smax attains its maximum at the same
value of � = �c at which χSG diverges. This led us to consider this value as our candidate for
the pseudo-critical point. The energy gap � vanishes in the surroundings of that value for all
realizations. In most disorder realizations, q(2) and 〈Sx〉 start their crossover at a value of �

which is inferior to �c. This may suggest that long-range temporal correlations develop at a
higher value of � than purely spatial ones.
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We would like to emphasize that our definition of Smax constitutes an alternative approach
to the entanglement entropy on random graphs. Its relation to the standard block entropy,
defined as the entanglement entropy obtained by tracing out a site and its neighbours up to a
certain distance, remains as an open question.

We have also monitored the ground-state probabilities of several classical low-energy
configurations, showing that, as � is reduced below �c, these probabilities increase
exponentially until they attain a maximum value and then fall to zero, leaving the classical
minimum energy configuration as the only ground-state component as � → 0.

The fact that the model on such a disordered graph was amenable to an analysis within
the DMRG is non trivial. Both Smax and the maximum number of retained states per block
increase slowly with the system size. In a restricted sense, the system behaves similarly to a
1D chain, despite the high connectivity of the underlying graph. This is a rather remarkable
effect due to the disorder, which perhaps leads to the selection of an effective 1D path of strong
bonds. If the couplings J are not random, we have found that the number of retained states per
block increases in a much more pronounced way, rendering the numerical DMRG approach
impractical. It will be interesting—and is left to a future study—to understand quantitatively
how the entanglement entropy at the transition behaves as a function of the system size, both
for random and non-random couplings [32–34].
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